

Electromagnetic simulations for hydrogen internal combustion engines

Vedat Ali ÖZKAN

Bosch Sanayi Tic. A.Ş. – PS-GI/ENG3-Bu 24/10/2023

Electromagnetic simulations for hydrogen internal combustion engines

Vedat <u>Ali</u> ÖZKAN

Powertrain

solutions

Bosch Sanayi Tic. A.Ş. – PS-GI/ENG3-Bu

24/10/2023

Gasoline Engineering Simulation department team, Bursa

Agenda

1. Introduction

- a. Electromagnetic simulations
- b. Hydrogen internal combustion engines
- 2. Results
 - a. Hydrogen pressure regulator
 - b. Hydrogen injector
- 3. Conclusion

Introduction Electromagnetic simulations

- Responsibilities:
 - Calculation of magnetic force for a given magnetic circuit
 - Providing magnetic circuit model to multidomain system simulation responsible
- Tools used

Δ

- Altair HyperMesh
- Edyson (Bosch internal)

PS-GI/ENG3-Bu_Özkan - Electromagnetic simulations for hydrogen internal combustion engines | 2023-10-24 Reviewed by Eryılmaz on 2023-10-09 **BOSCH**

Introduction Electromagnetic simulations

- Aim:
 - Controlling fuel flow
- Method:
 - Creating a system that moves in one direction when current is supplied
 - Moving in the other direction when current is not supplied
- Components:
 - Magnetic circuit and spring
- Workflow:

5

- Simplification of technical drawings
 - Typically, 2D and cylindrically symmetric
- Meshing simplified geometry
- Creation of Edyson model
- PS-GI/ENG3-Bu_Özkan Electromagnetic simulations for hydrogen internal combustion engines | 2023-10-24 Reviewed by Eryılmaz on 2023-10-09

Introduction Hydrogen internal combustion engines

Hydrogen Gasoline fuel tank fuel tank Gasoline Pressure regulator pump Gasoline Hydrogen injector injector Combustion Combustion chamber chamber

PS-GI/ENG3-Bu Özkan - Electromagnetic simulations for hydrogen internal combustion engines | 2023-10-24 Reviewed by Eryılmaz on 2023-10-09

© 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

6

Electrical control

Agenda

1. Introduction

- a. Electromagnetic simulations
- b. Hydrogen internal combustion engines

2. Results

- a. Hydrogen pressure regulator
- b. Hydrogen injector
- 3. Conclusion

- Challenges of developing a hydrogen pressure regulator:
 - Displacement of armature needs to be tripled
 - Hydrogen flow requires a greater clearing compared to gasoline
 - Increased displacement → increased magnetic
 flux loss → decreased magnetic force
 - %84 drop in magnetic force for geometry on RHS
 - Multiple approaches to increase magnetic force
 - Supplying more current etc.
 - PS-GI/ENG3-Bu's responsibility
 - Investigation of possible geometrical changes with Altair HyperMesh

8

Loss in magnetic force: %86

PS-GI/ENG3-Bu_Özkan - Electromagnetic simulations for hydrogen internal combustion engines | 2023-10-24 Reviewed by Eryılmaz on 2023-10-09

9

BOSCH

- Reason for drop in magnetic force:
 - Gap is too wide
 - → Although coil is feeding the system with same current, the magnetic field is localized far away from the gap
- Solution:
 - Adding a protrusion to outside of the gap
 - %14 → %24 (%71 increased magnetic force)

10 PS-GI/ENG3-Bu_Özkan - Electromagnetic simulations for hydrogen internal combustion engines | 2023-10-24 Reviewed by Eryılmaz on 2023-10-09

- Reason for drop in magnetic force:
 - Gap is too wide
 - → Although coil is feeding the system with same current, the magnetic field is localized far away from the gap
- Solution:
 - Adding a protrusion to outside of the gap
 - %14 → %24 (%71 increased magnetic force)

PS-GI/ENG3-Bu_Özkan - Electromagnetic simulations for hydrogen internal combustion engines | 2023-10-24 Reviewed by Eryılmaz on 2023-10-09

Purple part increases magnetic force %71

Agenda

1. Introduction

- a. Electromagnetic simulations
- b. Hydrogen internal combustion engines
- 2. Results
 - a. Hydrogen pressure regulator
 - b. Hydrogen injector
- **3. Conclusion**

 (\mathbb{H})

BOSCH

Results Hydrogen injector

Hydrogen fuel injection equipment

- Hydrogen direct injector
- 2 Rail with pressure and temperature sensor
- 8 Electronic pressure regulator

Ignition system

- Ignition coil
- 6 Spark plug

Engine control

- Gamshaft position sensor
 Speed sensor
- 6 Knock sensor
- Temperature sensor
- 1 Intake manifold and boost pressure
- sensor with temperature sensor
- O Crankshaft speed sensor
- B Electronic engine-
- control unit

 Kir mangement
 Image: Structure Structure

Hydrogen fuel injection equipment

Hydrogen direct injector
 Rail with pressure and temperature sensor
 Electronic pressure regulator

Ignition system Ignition coil Spark plug

Engine control Camshaft position sensor Speed sensor Knock sensor Temperature sensor Intake manifold and boost pressure sensor with temperature sensor Powertrain domain coordinator

Air management

1 Hot-film air-flow meter

B Electronic throttle valve

Blectronic enginecontrol unit

Supply module

20 Electric motor

13 PS-GI/ENG3-Bu_Özkan - Electromagnetic simulations for hydrogen internal combustion engines | 2023-10-24 Reviewed by Eryılmaz on 2023-10-09

Results Hydrogen injector

Contribution of PS-GI/ENG3-Bu:

Providing scalable models for multidomain simulations

Ex: Simcenter Amesim is a multi-domain simulation tool that can run electromagnetic simulations in combination with pneumatic simulations

14 PS-GI/ENG3-Bu_Özkan - Electromagnetic simulations for hydrogen internal combustion engines | 2023-10-24 Reviewed by Eryılmaz on 2023-10-09

Conclusion

1. Introduction

- a. Electromagnetic simulations
- b. Hydrogen internal combustion engines

2. Results

- a. Hydrogen pressure regulator
- b. Hydrogen injector
- 3. Conclusion
- Bosch Sanayi Tic. A.Ş. PS-GI/ENG3-Bu is providing electromagnetic simulation support to product development of hydrogen internal combustion engines
- Altair HyperMesh is used for these simulations
- Bosch Internal product, Edyson, is developed considering capabilities of Altair HyperMesh

© 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH