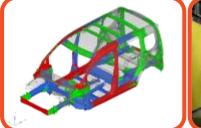
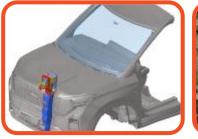
FORD ØTØSAN


Sancaktepe R&D Center Vehicle Safety Team

VEHICLE SAFETY - TEAM

Crash Safety
Front and Rear Impact


Energy management, load paths Fuel system & HV systems integrity

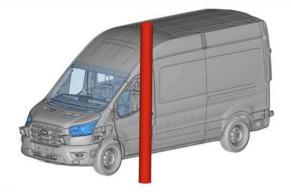
Occupant Safety & Side Impact

Pedestrian Protection & Low Speed Damageability

Studio interface, exterior systems
Concept development
GDV/Thatcham insurance ratings

4 Safety teams
Total 36 safety engineers

VEHICLE SAFETY - DEVELOPMENT

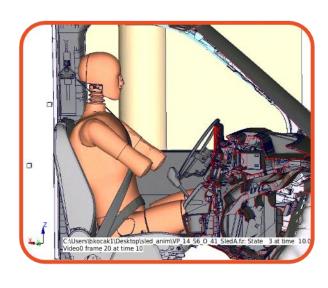

Concept Development

Virtual Series

- Concept Development and Verification
- Load Path Strategy
- **Program Content Definition**

- Virtual Series (UNV/UPV CAE)
- **Sled/Component Testing**
- **TPV Testing**

- Safety Sign-Off Testing
- Witnessed Homologation Testing
- Public Domain Testing (NCAP)



Side Crash Safety

Brief Description

- Restraint System Development
- Side Structure & Interior Design Development
- CAE Simulations
- Component level & full vehicle level testing

Customer Focus

- ➤ Homologation & certification completion on time
- NCAP stars for marketing
- > Safer vehicles & customer satisfaction

FORD OTOSAN

LCV BEV SIDE IMPACT DEVELOPMENT

TUBA MUMCU

OCCUPANT SAFETY TEAM MEMBER

Introducing

PROJECTS Participated as a Safety Engineer

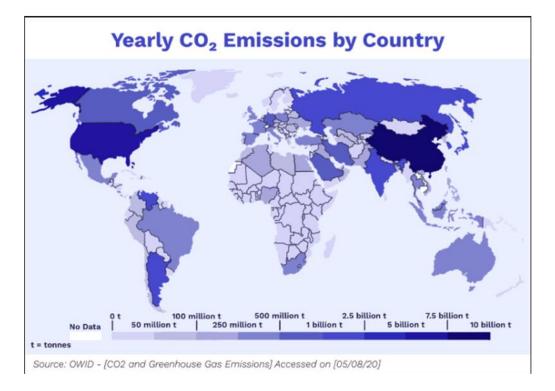
Ford Courier, side structure & occupant Ford Transit, structure

EXPERIENCE

Occupant Safety Engineer - Ford Otosan Sancaktepe R&D Center, Oct 2018 Quality Assurance Engineer - Ford Otosan Eskişehir Plant, Jan 2017 Test Engineer – ODTÜ Teknokent, Aug 2015 Manufacturing Engineer – ODTÜ Teknokent, Sep 2014

EDUCATION

Master of Science – BOUN, Automotive Engineering, İstanbul Bachelor of Engineering – METU, Mechanical Engineering, Ankara Secondary Education – Kdz. Ereğli Anatolian High School, Zonguldak Primary Education – Nimet Grammar School, Zonguldak


Content

- ➤ Introduction to EV, BEV, Side Impact.
- > Purpose
- CAE Studies
- > Conclusion
- > Results
- > Summary

Introduction

The environmental impact of the petroleum-based transportation led to renewed interest in EVs.

Temperature Rise

Source: IPCC, 2018: Global Warming of 1.5°C.

Fluorinated Gases 2.1% Methane 17.3% CO₂ 74.4%

Source: World Resource Institute- [World Greenhouse Gas Emissions: 2016].

Introduction

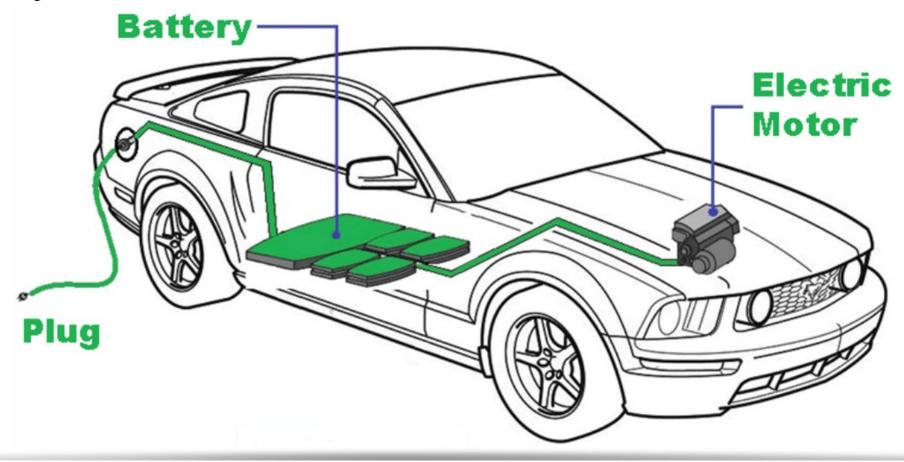
Scottish inventor Robert Anderson's the first full sized electric vehicle of the world, 1832

Electric cars being charged, 1907

Introduction

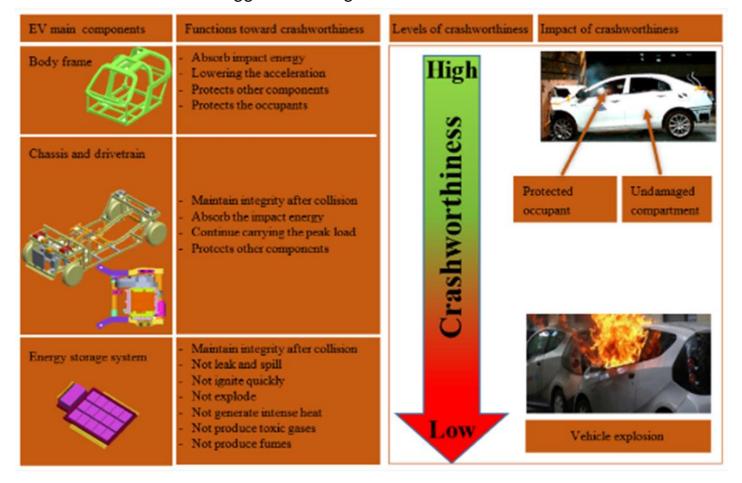
Many countries made various plans to ban ICE vehicles and increase the number of EVs to reduce fossil CO2 emissions.

Country	Current government proposals to ban ICE only vehicle sales
China	Actively considering and studying a ban
France	2040
Germany	2030
India	2030
Ireland	2030
srael	2030
Netherlands	2030
Norway	2025
Scotland	2032
UK UK	2040


Sources: Thomson Reuters GFMS team, Thomson Reuters Elkon, and Reuters News. Data current as of March 20, 2018.

Introduction

- BEV is remarkable due to HV battery as an only source of propulsion.
- Therefore, sizes enlarge.



Introduction

Crashworthiness performance becomes one of the biggest challenges.

Reminder: Crashworthiness performance of the vehicle can be defined as the impact energy absorption ability by controlling the failure mechanisms and modes.

Introduction

Energy must be absorbed without damaging any battery array. Otherwise, there may be an electric leakage, fire, or explosion when an accident occurs.

Introduction

Also requires **lightweight** to provide driving performance.

Reminder: Weight is directly proportional to the electric range.

Lightwe	ight Materials vs	Traditional I	Material
	LIGHTWEIGHT MATERIALS	MASS REDUCTION	
	Magnesium Carbon fiber composites	50-70%	
	Aluminum and Al matrix composites Titanium	30-60% 40-55%	
	Advanced high strength steel	15-25%	

- Al alloys are desirable materials due to being a third lighter than steel but having a similar strength-to-weight ratio.
 - · Better corrosion resistance
 - Recyclability
 - · Higher cost

Photo B.McCalley, Model T Ford Club of America - Taub, A.I., Krajewski, P.E., Luo, A.A. et al. JOM (2007) 59: 48. doi:10.1007/s11837-007-0022-7

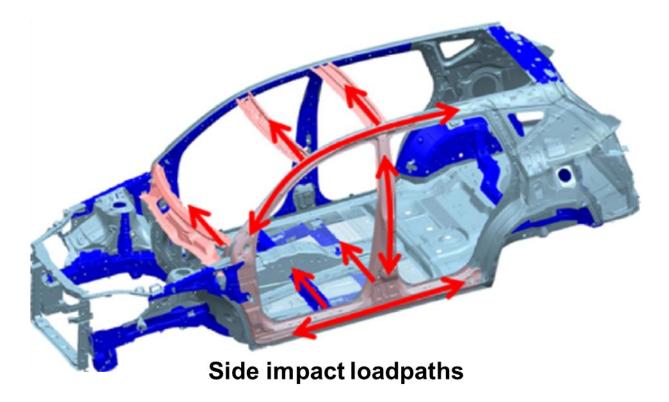
1909

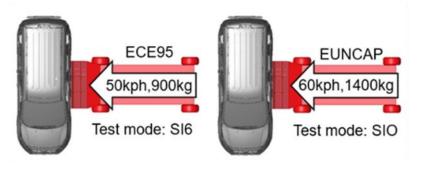
Aluminum Body Panels

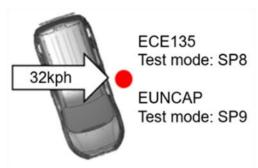
Ford's Model T Touring Car used aluminum body panels but switched predominately to steel from 1918 through the 1970s due to cost.

Purpose

- > The main purpose is to reach an optimum tray design for HV battery of a B platform BEV which is evolved from an ICE vehicle.
- > Al extrusion is a clever option to build a battery tray.
 - Uniform crashworthiness performance all along HV battery.
 - Lightweight
- Final form of the tray must fit to narrow gap.
- > BEVs are heavier. Therefore, intrusion levels are higher.
- > Optimization requires analyzing intrusion and acceleration which are inversely proportional.

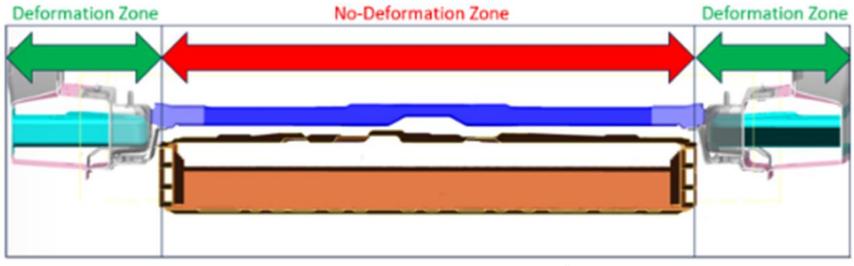

Reminder: Impact energy is equal to kinetic energy of vehicle or barrier.



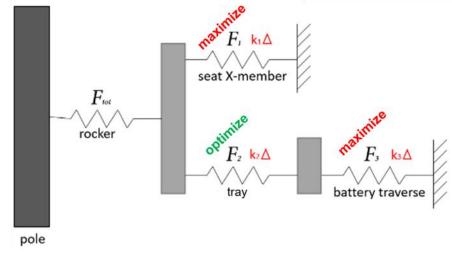

Side Impact

Architectural development is primarily driven by side impact.

Side impact modes



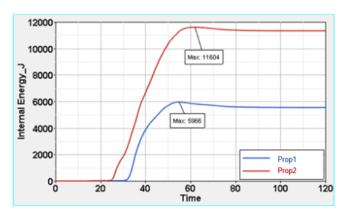
Reminder: Loadpaths transfer impact load from impact side to non-impact side of the vehicle.



Impact Energy Management

Observations:

- Loadpaths must not be deformed in any way.
- Parts in deformation zone must be deformed to absorb energy.
- Tray must fit to deformation zone.



CAE - Initial Study

manufacturing limits of the supplier **ESE Delivery Proposal** 110mm 220 mm 110 mm 82 mm

- Proposals focus on:
 - maximizing the number of pockets of extrusion to absorb more energy,
 - enlarging extrusion in Y-direction up to AB-line to meet pole early and absorb additional energy.

Summary

- The main purpose is to achieve an optimum battery tray which is as light as possible and absorbs maximum impact energy in the meantime.
- Al extrusion is a clever option when crashworthiness and lightweight are considered. It can fit in a small gap between battery outer wall and rocker.
- Consider manufacturing limitations to achieve producible design.

