

Corporate Presentation

DESIGN OF YAW AND PITCH MOTOR FOR WIND TURBINE APPLICATION

Sensitivity: Public

- --

Turkey's Largest* Motor Company Europe's Nr. 1 Choice from Turkey

Greater İstanbul Turkey

+30

40.000m

Tota 956 1 R&D 102

Countrie

+200 Accounts

79 Internati onal Customers h6k Nr. SKU's

*In terms of Export.

Locations

Multiple Certifications

Defence Compatibility

*A+ 96 Score

*TEI Assesment

Business Segments

Secto rs

Motion

Intralogistics

Solutions

Motion Control

Algorithms &

Embedded System

Design

Defence

Serve Drivers Ground Vehicle Ground Vehicle Solutions <u>Aviation Alternator</u> Systems Guidance & Air Domain Systems

Light E-Mobility Electrification Automotive Traction Auxiliary Systems

Indus Renewable General Purpose Motors Wind Generators & Definite Purpose Motors Components EC Motors Wind Auxiliary Systems

Sensitivity: Public

EV Chargers & Charging TAG EY Shartgensc DC EV Chargers DigitalUPLa form

WHAT ARE MEANINGS OF YAW AND PITCH?

REQUIREMENTS

The motor shall have the following shaft torque-speed-curve for the Motor 32/120:						
Rotational speed [rpm]	Torque (\$3) 75% [Nm]	S6 Peak torque [Nm]	S6 Base torque [Nm]	Torque (S2) [Nm]		
Cycle time	45s on / 15s off	1s	9s	3s		
0	32	75	28	120		
2000	32	75	28	120		
3000	0	18	0	55		

Pitch motor requirements

The motor shall have the following shaft torque and shaft speed curve:

Rotational shaft speed [rpm]	Shaft torque S1 [Nm]	Overload [Nm]
0	40	160
2000	40	160
2300	15	160
2500	0	125
3000		40

Yaw Motor 180 160 -Overload 140 **Torque [Nm]** 100 80 —only as generator 60 40 20 500 1000 1500 2000 2500 3000 3500 Speed[rpm]

Yaw motor requirements

MULTIPHYSICS DESIGN

MULTIPHYSICS DESIGN

Ļ	DESIGN	CHARACTERIZATION		WORKING POINT PERFORMANCE MAP		PING MECHANICS	
E stol	TEST re motor EXPORT	OPEN CIRCUIT MODEL DATASHE	ET THERMAL	SINE WAVE SQUARE WAVE	SINE WAVE	NVH	?
SECTIONS		CHARACTERIZATION - OPEN CIRC	UIT - MOTOR	AND GENERATOR - COGGING	то	OPEN CIRCUIT	?
Config	uration	Overview Current				✓ MOTOR & GENERATOR	
		Inputs			i	✓ Cogging Back emf	
Inputs	Settings	Context Family	Characterizat	Package	Open circuit		
		Test Advanced parameters	Cogging	-		Ð	
Magnets		No. comp. / cogging period	45 0.0	Max. harmonic order Airgan mesh coefficient	20	U Thermal	
Main	results		0.0	n Sub mesh coemercite	0.45	IN DUITS	
		Settings No parameters for this test					
Mag. flux	Cogging torque	Thermal				т	
Graphs	& tables	Magnet temperature Tmag (°C)	20.0				
~	Luft	Magnet characteristics]
Cogging torque	Cogging torq. harm.	Magnets					
		Magnet temperature Tmag (°C) Magnet name	20.0 Magnet	Material name	REF.SmCo 10		
		Remanent induction at Tref (T)	1.04	Intrinsic coercive field at Tref (A/m)	1.8 E6		
Cogging torq. harm.		Remanent induction at Tmag (T)	1.04	Intrinsic coercive field at Tmag (A/m	n) 1.8 E6		
					Ļ		

COGGING TORQUE AND BACK EMF ANALYSIS

Cogging torque versus rotor angular position

COGGING TORQUE

BACK EMF

BACK EMF HARMONICS

WORKING POINT ANALYSIS RESULTS

Machine performance - Working point

General data				
Operating mode Motor				
Mechanical torque (N.m)	40.697	Speed (rpm)	2 800.0	Electrical frequency (Hz)
Mechanical power (W)	11 932.852	Machine electrical power (W)	12 279.933	Machine total losses (W)
Machine efficiency (%)	97.174	Apparent power (VA)	12 414.377	Reactive power (VAr)
Control angle (deg)	26.0	Power factor	9.892 E-1	Phase angle (deg)
Line current, rms (A)	14.6	Phase current, rms (A)	14.6	
Line-Line voltage, rms (V)	490.921	Phase voltage, rms (V)	283.433	
Machine constants				
Current density, rms (A/mm2)	3.254	Electrical loading, rms (A/m)	17 623.28	Power density (W/kg)
kT (N.m/A)	1.971			
Power balance				
Machine total losses (W)	347.082	Joule losses (W)	163.88	
Mechanical losses (W)	0.0	Total Iron losses (W)	183.202	Additional losses (W)
Flux in airgap				
Flux density, ARV (T)	4.568 E-1	Flux density 1st harm., rms (T)	4.893 E-1	Flux density, peak (T)
Flux / pole, ARV (Wb)	4.058 E-3	Flux / pole 1st harm., rms (Wb)	4.347 E-3	Flux / pole, peak (Wb)
Flux density in iron				
Stator tooth, max (T)	1.504	Stator tooth, mean (T)	8.253 E-1	
Stator foot tooth, max (T)	tator foot tooth, max (T) 1.913		8.516 E-1	
Stator yoke, max (T) 1.472		Stator yoke, mean (T)	4.935 E-1	
Rotor yoke, max (T) 1.446		Rotor yoke, mean (T)	4.964 E-1	
Rotor bridge, max (T) 2.3		Rotor bridge, mean (T)	1.648	
Rotor pole shoe, max (T)	2.291	Rotor pole shoe, mean (T)	1.132	
Internole may (T)	1 730	Internole mean (T)	7 57/ F-1	

Isovalues

EFFICIENCY MAP

TORQUE VS SPEED MAP

THERMAL RESULTS

FEA ANALYSIS

FEA ANALYSIS

Mechanical set / Magnetic torque [ROTOR]

TORQUE RIPPLE ANALYSIS

EVOLUTIVECURVE2D_1

Mechanical set / Magnetic torque [ROTOR] Mechanical set / Magnetic torque [ROTOR] (N.m) Mechanical set / Magnetic torque [ROTOR] (N.m) 41.50E0 41.25E0 41.00E0 40.7747E0 N.m U.T JEU 40.50E0 40.25E0 Reset 225.0E0 ANGPOS_ROTOR 50.00E0 75.00E0 100.0E0 125.0E0 150.0E0 175.0E0 200.0E0

Torque Ripple =3,06

MAGNETIC SATURATION

DESIGN RESULTS

Design Requireme		nts	Design Results
Max. Current	<15 A		14.6 A
Maximum speed	<4400 rpm		4000 rpm
Maximum torque	160 Nm		160 Nm
Minimum Efficiency	92		96,67
Cooling Type	Self cooling		Self cooling decided

Contact Us

WAT MOTOR SANAYİ VE TİCARET A.Ş. Karaağaç Mahallesi 8 Sokak No: 4 A/2 Kapaklı 59510 Tekirdağ

PBX: 0+90 282 292 22 22 TAX NR: 8000847334 TRADE REG. NR: 6816

Teşekkürler

Call at: +90 850 399 4 928

LIAISON OFFICE

Karaağaç Cad. No:2-6 Sütlüce 34445, Istanbul

www.wat.com.tr

sales@wat.com.tr info@wat.com.tr info@tee.com.tr

⊘ in

Berke ÇİFCİLER berke.cifciler@wat.com.tr